|
|
|
@ -92,6 +92,16 @@ def merge_informative_pair(
|
|
|
|
right_on=date_merge,
|
|
|
|
right_on=date_merge,
|
|
|
|
how="left",
|
|
|
|
how="left",
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# If date_merge of the informative dataframe candle that is above of first date of dataframe, then first raws of
|
|
|
|
|
|
|
|
# dataframe are filled with Nans. The code below is to fix it and fulfill first raws with an appropriate values.
|
|
|
|
|
|
|
|
if len(dataframe) > 1 and pd.isnull(dataframe.iloc[0]["date_merge"]):
|
|
|
|
|
|
|
|
first_valid_idx = dataframe["date_merge"].first_valid_index()
|
|
|
|
|
|
|
|
first_valid_date_merge = dataframe.loc[first_valid_idx, "date_merge"]
|
|
|
|
|
|
|
|
matching_informative_raws = informative[informative["date_merge"] < first_valid_date_merge]
|
|
|
|
|
|
|
|
if not matching_informative_raws.empty:
|
|
|
|
|
|
|
|
dataframe.loc[:first_valid_idx - 1] = dataframe.loc[:first_valid_idx - 1].fillna(
|
|
|
|
|
|
|
|
matching_informative_raws.iloc[-1])
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
dataframe = pd.merge(
|
|
|
|
dataframe = pd.merge(
|
|
|
|
dataframe, informative, left_on="date", right_on=date_merge, how="left"
|
|
|
|
dataframe, informative, left_on="date", right_on=date_merge, how="left"
|
|
|
|
|