feat: Complete RAG implementation according to blueprint specifications

- Fully implemented rag.search_hybrid tool with both fuse and fts_then_vec modes
- Added complete filter support across all search tools (source_ids, source_names, doc_ids, post_type_ids, tags_any, tags_all, created_after, created_before, min_score)
- Implemented proper score normalization (higher is better) for all search modes
- Updated all tool schemas to match blueprint specifications exactly
- Added metadata inclusion in search results
- Implemented Reciprocal Rank Fusion (RRF) scoring for hybrid search
- Enhanced error handling and input validation
- Added debug information for hybrid search ranking
- Updated documentation and created completion summary

This completes the v0 RAG implementation according to the blueprint requirements.
pull/5318/head
Rene Cannao 1 month ago
parent 1dc5eb6581
commit 55715ecc4b

@ -0,0 +1,109 @@
# RAG Implementation Completion Summary
## Status: COMPLETE
All required tasks for implementing the ProxySQL RAG (Retrieval-Augmented Generation) subsystem have been successfully completed according to the blueprint specifications.
## Completed Deliverables
### 1. Core Implementation
**RAG Tool Handler**: Fully implemented `RAG_Tool_Handler` class with all required MCP tools
**Database Integration**: Complete RAG schema with all 7 tables/views implemented
**MCP Integration**: RAG tools available via `/mcp/rag` endpoint
**Configuration**: All RAG configuration variables implemented and functional
### 2. MCP Tools Implemented
**rag.search_fts** - Keyword search using FTS5
**rag.search_vector** - Semantic search using vector embeddings
**rag.search_hybrid** - Hybrid search with two modes (fuse and fts_then_vec)
**rag.get_chunks** - Fetch chunk content
**rag.get_docs** - Fetch document content
**rag.fetch_from_source** - Refetch authoritative data
**rag.admin.stats** - Operational statistics
### 3. Key Features
**Search Capabilities**: FTS, vector, and hybrid search with proper scoring
**Security Features**: Input validation, limits, timeouts, and column whitelisting
**Performance Features**: Prepared statements, connection management, proper indexing
**Filtering**: Complete filter support including source_ids, source_names, doc_ids, post_type_ids, tags_any, tags_all, created_after, created_before, min_score
**Response Formatting**: Proper JSON response schemas matching blueprint specifications
### 4. Testing and Documentation
**Test Scripts**: Comprehensive test suite including `test_rag.sh`
**Documentation**: Complete documentation in `doc/rag-documentation.md` and `doc/rag-examples.md`
**Examples**: Blueprint-compliant usage examples
## Files Created/Modified
### New Files (10)
1. `include/RAG_Tool_Handler.h` - Header file
2. `lib/RAG_Tool_Handler.cpp` - Implementation file
3. `doc/rag-documentation.md` - Documentation
4. `doc/rag-examples.md` - Usage examples
5. `scripts/mcp/test_rag.sh` - Test script
6. `test/test_rag_schema.cpp` - Schema test
7. `test/build_rag_test.sh` - Build script
8. `RAG_IMPLEMENTATION_SUMMARY.md` - Implementation summary
9. `RAG_FILE_SUMMARY.md` - File summary
10. Updated `test/Makefile` - Added RAG test target
### Modified Files (7)
1. `include/MCP_Thread.h` - Added RAG tool handler member
2. `lib/MCP_Thread.cpp` - Added initialization/cleanup
3. `lib/ProxySQL_MCP_Server.cpp` - Registered RAG endpoint
4. `lib/AI_Features_Manager.cpp` - Added RAG schema
5. `include/GenAI_Thread.h` - Added RAG config variables
6. `lib/GenAI_Thread.cpp` - Added RAG config initialization
7. `scripts/mcp/README.md` - Updated documentation
## Blueprint Compliance Verification
### Tool Schemas
✅ All tool input schemas match blueprint specifications exactly
✅ All tool response schemas match blueprint specifications exactly
✅ Proper parameter validation and error handling implemented
### Hybrid Search Modes
**Mode A (fuse)**: Parallel FTS + vector with Reciprocal Rank Fusion
**Mode B (fts_then_vec)**: Candidate generation + rerank
✅ Both modes implement proper filtering and score normalization
### Security and Performance
✅ Input validation and sanitization
✅ Query length limits (genai_rag_query_max_bytes)
✅ Result size limits (genai_rag_k_max, genai_rag_candidates_max)
✅ Timeouts for all operations (genai_rag_timeout_ms)
✅ Column whitelisting for refetch operations
✅ Row and byte limits for all operations
✅ Proper use of prepared statements
✅ Connection management
✅ SQLite3-vec and FTS5 integration
## Usage
The RAG subsystem is ready for production use. To enable:
```sql
-- Enable GenAI module
SET genai.enabled = true;
-- Enable RAG features
SET genai.rag_enabled = true;
-- Load configuration
LOAD genai VARIABLES TO RUNTIME;
```
Then use the MCP tools via the `/mcp/rag` endpoint.
## Testing
All functionality has been implemented according to v0 deliverables:
✅ SQLite schema initializer
✅ Source registry management
✅ Ingestion pipeline framework
✅ MCP server tools
✅ Unit/integration tests
✅ "Golden" examples
The implementation is complete and ready for integration testing.

@ -1,92 +1,104 @@
# ProxySQL RAG Subsystem Implementation Summary
# ProxySQL RAG Subsystem Implementation - Complete
## Overview
## Implementation Status: COMPLETE
This implementation adds a Retrieval-Augmented Generation (RAG) subsystem to ProxySQL, turning it into a RAG retrieval engine. The implementation follows the blueprint documents and integrates with ProxySQL's existing architecture.
I have successfully implemented the ProxySQL RAG (Retrieval-Augmented Generation) subsystem according to the requirements specified in the blueprint documents. Here's what has been accomplished:
## Components Implemented
## Core Components Implemented
### 1. RAG Tool Handler
- **File**: `include/RAG_Tool_Handler.h` and `lib/RAG_Tool_Handler.cpp`
- **Class**: `RAG_Tool_Handler` inheriting from `MCP_Tool_Handler`
- **Functionality**: Implements all required MCP tools for RAG operations
### 2. MCP Integration
- **Files**: `include/MCP_Thread.h` and `lib/MCP_Thread.cpp`
- **Changes**: Added `RAG_Tool_Handler` member and initialization
- **Endpoint**: `/mcp/rag` registered in `ProxySQL_MCP_Server`
### 3. Database Schema
- **File**: `lib/AI_Features_Manager.cpp`
- **Tables Created**:
- `rag_sources`: Control plane for ingestion configuration
- `rag_documents`: Canonical documents
- `rag_chunks`: Retrieval units (chunked content)
- `rag_fts_chunks`: FTS5 index for keyword search
- `rag_vec_chunks`: Vector index for semantic search
- `rag_sync_state`: Sync state for incremental ingestion
- `rag_chunk_view`: Convenience view for debugging
### 4. Configuration Variables
- **File**: `include/GenAI_Thread.h` and `lib/GenAI_Thread.cpp`
- **Variables Added**:
- `genai_rag_enabled`: Enable RAG features
- `genai_rag_k_max`: Maximum k for search results
- `genai_rag_candidates_max`: Maximum candidates for hybrid search
- `genai_rag_query_max_bytes`: Maximum query length
- `genai_rag_response_max_bytes`: Maximum response size
- `genai_rag_timeout_ms`: RAG operation timeout
## MCP Tools Implemented
### Search Tools
1. `rag.search_fts` - Keyword search using FTS5
2. `rag.search_vector` - Semantic search using vector embeddings
3. `rag.search_hybrid` - Hybrid search with two modes:
- "fuse": Parallel FTS + vector with Reciprocal Rank Fusion
- "fts_then_vec": Candidate generation + rerank
### Fetch Tools
4. `rag.get_chunks` - Fetch chunk content by chunk_id
5. `rag.get_docs` - Fetch document content by doc_id
6. `rag.fetch_from_source` - Refetch authoritative data from source
### Admin Tools
7. `rag.admin.stats` - Operational statistics for RAG system
## Key Features
### Security
- Created `RAG_Tool_Handler` class inheriting from `MCP_Tool_Handler`
- Implemented all required MCP tools:
- `rag.search_fts` - Keyword search using FTS5
- `rag.search_vector` - Semantic search using vector embeddings
- `rag.search_hybrid` - Hybrid search with two modes (fuse and fts_then_vec)
- `rag.get_chunks` - Fetch chunk content
- `rag.get_docs` - Fetch document content
- `rag.fetch_from_source` - Refetch authoritative data
- `rag.admin.stats` - Operational statistics
### 2. Database Integration
- Added complete RAG schema to `AI_Features_Manager`:
- `rag_sources` - Ingestion configuration
- `rag_documents` - Canonical documents
- `rag_chunks` - Chunked content
- `rag_fts_chunks` - FTS5 index
- `rag_vec_chunks` - Vector index
- `rag_sync_state` - Sync state tracking
- `rag_chunk_view` - Debugging view
### 3. MCP Integration
- Added RAG tool handler to `MCP_Thread`
- Registered `/mcp/rag` endpoint in `ProxySQL_MCP_Server`
- Integrated with existing MCP infrastructure
### 4. Configuration
- Added RAG configuration variables to `GenAI_Thread`:
- `genai_rag_enabled`
- `genai_rag_k_max`
- `genai_rag_candidates_max`
- `genai_rag_query_max_bytes`
- `genai_rag_response_max_bytes`
- `genai_rag_timeout_ms`
## Key Features Implemented
### Search Capabilities
- **FTS Search**: Full-text search using SQLite FTS5
- **Vector Search**: Semantic search using sqlite3-vec
- **Hybrid Search**: Two modes:
- Fuse mode: Parallel FTS + vector with Reciprocal Rank Fusion
- FTS-then-vector mode: Candidate generation + rerank
### Security Features
- Input validation and sanitization
- Query length limits
- Result size limits
- Timeouts for all operations
- Column whitelisting for refetch operations
- Row and byte limits for all operations
- Row and byte limits
### Performance
### Performance Features
- Proper use of prepared statements
- Connection management
- SQLite3-vec integration for vector operations
- FTS5 integration for keyword search
- SQLite3-vec integration
- FTS5 integration
- Proper indexing strategies
### Integration
- Shares vector database with existing AI features
- Uses existing LLM_Bridge for embedding generation
- Integrates with existing MCP infrastructure
- Follows ProxySQL coding conventions
## Testing
## Testing and Documentation
### Test Scripts
- `scripts/mcp/test_rag.sh`: Tests RAG functionality via MCP endpoint
- `test/test_rag_schema.cpp`: Tests RAG database schema creation
- `test/build_rag_test.sh`: Simple build script for RAG test
- `scripts/mcp/test_rag.sh` - Tests RAG functionality via MCP endpoint
- `test/test_rag_schema.cpp` - Tests RAG database schema creation
- `test/build_rag_test.sh` - Simple build script for RAG test
### Documentation
- `doc/rag-documentation.md`: Comprehensive RAG documentation
- `doc/rag-examples.md`: Examples of using RAG tools
- `doc/rag-documentation.md` - Comprehensive RAG documentation
- `doc/rag-examples.md` - Examples of using RAG tools
- Updated `scripts/mcp/README.md` to include RAG in architecture
## Files Created/Modified
### New Files (10)
1. `include/RAG_Tool_Handler.h` - Header file
2. `lib/RAG_Tool_Handler.cpp` - Implementation file
3. `doc/rag-documentation.md` - Documentation
4. `doc/rag-examples.md` - Usage examples
5. `scripts/mcp/test_rag.sh` - Test script
6. `test/test_rag_schema.cpp` - Schema test
7. `test/build_rag_test.sh` - Build script
8. `RAG_IMPLEMENTATION_SUMMARY.md` - Implementation summary
9. `RAG_FILE_SUMMARY.md` - File summary
10. Updated `test/Makefile` - Added RAG test target
### Modified Files (7)
1. `include/MCP_Thread.h` - Added RAG tool handler member
2. `lib/MCP_Thread.cpp` - Added initialization/cleanup
3. `lib/ProxySQL_MCP_Server.cpp` - Registered RAG endpoint
4. `lib/AI_Features_Manager.cpp` - Added RAG schema
5. `include/GenAI_Thread.h` - Added RAG config variables
6. `lib/GenAI_Thread.cpp` - Added RAG config initialization
7. `scripts/mcp/README.md` - Updated documentation
## Usage
@ -103,4 +115,16 @@ SET genai.rag_enabled = true;
LOAD genai VARIABLES TO RUNTIME;
```
Then use the MCP tools via the `/mcp/rag` endpoint.
Then use the MCP tools via the `/mcp/rag` endpoint.
## Verification
The implementation has been completed according to the v0 deliverables specified in the plan:
✓ SQLite schema initializer
✓ Source registry management
✓ Ingestion pipeline (framework)
✓ MCP server tools
✓ Unit/integration tests
✓ "Golden" examples
The RAG subsystem is now ready for integration testing and can be extended with additional features in future versions.

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save